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Abstract— The A* search algorithm is effective for finding 

optimal paths but can face performance issues in large-scale 

graphs. This paper investigates the performance of Bidirectional 

A* search as an optimization over the standard Unidirectional A*. 

Both algorithms were implemented and tested on a real-world 

flight dataset, with the objective of finding the path with the 

minimum total travel time. The heuristic function was calculated 

using the Haversine great-circle distance to estimate remaining 

travel time. The results show that bidirectional search offers a 

significant average speedup of 1.75x and reduces the number of 

nodes explored by 55.3%, with its advantage growing substantially 

on medium and long-haul routes. However, this speed increase 

came at a considerable cost. The bidirectional implementation 

only found the same optimal-cost path as the unidirectional search 

in 60% of cases, pointing to a common implementation flaw in its 

termination condition. The study concludes that while 

bidirectional A* is a powerful optimization for large-scale 

pathfinding, its practical application demands a correct 

implementation to ensure that gains in execution speed do not 

compromise path optimality. 

Keywords— A* search; bidirectional search; pathfinding; flight 

network; graph theory; heuristic; Haversine formula. 

I.  INTRODUCTION 

The appearance of complex, interconnected networks has 
been a defining feature of the 21st century, from social media 
graphs to global supply chains. Among the most tangible of 
these is the global air transportation network, a vast web 
connecting thousands of airports with millions of routes. For 
passengers, airlines, and logistics companies, navigating this 
network efficiently is a problem with practical and economic 
significance. The challenge does not only lie in finding a path 
between two cities, but in discovering the optimal path 
according to a specific metric, such as cost, distance, or, as is the 
focus of this paper, total travel time. 

Pathfinding algorithms provide the computational 
framework for solving such problems. While foundational 
algorithms can guarantee a path, more advanced techniques are 
required for achieving optimality in a timely manner, especially 
as the scale of the network grows. The A* search algorithm 
stands out as a highly effective method for finding the lowest-

cost path by intelligently using a heuristic to guide its search, 
significantly outperforming "blind" searches in complex graphs. 

However, even A* can suffer from performance degradation 
in large state spaces. Application of bidirectional search can 
offer promising optimization, where two simultaneous searches, 
one forward from the start and one backward from the goal, are 
conducted with the aim of meeting in the middle. This paper 
hypothesizes that a Bidirectional A* search will offer a 
substantial performance improvement over the standard 
Unidirectional A* by reducing the total number of nodes that 
must be explored. 

To validate this hypothesis, this study implements and 
compares both Unidirectional and Bidirectional A* algorithms. 
These algorithms are applied to a real-world global flight 
network dataset, where the objective is to find the path with the 
minimum total flight time. Performance will be quantitatively 
measured by analyzing the number of expanded nodes and the 
total execution time required to find the optimal path. This paper 
aims to provide an empirical basis for evaluating the practical 
benefits of bidirectional search in the context of large-scale, real-
world pathfinding problems. 

II. THEORETICAL BASIS 

A. Graph 

A graph is a data structure that represents connections 
between objects. It consists of a set of nodes (or vertices) and a 
set of edges that connect pairs of nodes [1]. For example, a graph 
can be used to represent system of bridges and land separated by 
rivers, with nodes representing lands and edges representing 
bridges, shown in Fig. 1. 

 

Fig. 1. Representation of Königsberg bridge problem in graph. Source: [1] 
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A fundamental property of a graph is its directionality. In an 
undirected graph, the edges are bidirectional, where a 
connection between node A and node B implies that one can 
travel from A to B and also from B to A along the same edge. In 
contrast, a directed graph (or digraph) uses edges that have a 
specific orientation. An edge from node A to node B does not 
imply the existence of a corresponding edge from B to A [1]. 

 

Fig. 2. A directed graph. Source: [1] 

The global flight network is inherently a directed graph. For 
example, the existence of a scheduled flight from Jakarta (CGK) 
to Tokyo (NRT) is a distinct entity from a flight operating from 
Tokyo (NRT) to Jakarta (CGK). They are separate routes with 
different flight numbers, departure times, and potentially even 
different flight durations due to external factors such as jet 
streams. 

A graph becomes a weighted graph when a numerical value, 
or weight, is associated with each edge. This weight quantifies a 
specific attribute of the connection, such as its cost, distance, 
capacity, or travel time. The choice of weight is critical as it 
defines the criteria for an "optimal" path. A path that is optimal 
for one weight (e.g., shortest distance) may be suboptimal for 
another (e.g., lowest price). 

 

Fig. 3. Weighted vs. unweighted graph. Source: [1] 

In the context of this paper, each directed edge (flight route) 
is assigned two weights: 

• Time: The duration of the flight in minutes. This value 
serves as the cost to be minimized by the pathfinding 
algorithm. The optimal path will be the one with the 
lowest cumulative flight time. 

• Distance: The physical distance of the flight route in 
kilometers. This value is not used as a direct cost but is 
used to calculate the heuristic for the A* search 
algorithm, providing an estimate of the remaining travel 
time. 

A graph can be represented in various ways in computer 
memory. The choice of representation method has significant 
implications for memory usage and the performance of 
pathfinding operations. Some of the most common 
representation methods are [2]: 

• Adjacency matrix: Each pair of node in the graph is 
represented as a matrix, with the value as the weight of 
the edges connecting the nodes in the case of weighted 
graph, or simply boolean 1/0 in the case of unweighted 
graph. 

 

Fig. 4. Adjacency matrix. 

Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html 

• Incidency matrix: Nodes are represented in the rows, 
and edges are represented in the columns of the matrix. 
For a directed graph, the (weighted) value is positive if 
the direction of the edge is “out” from the node, and 
negative if the direction goes “in” to the node. 

 

Fig. 5. Incidency matrix. 
Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html 

• Adjacency list: The graph is represented using linked 
list, with each node having elements containing pointer 
to nodes connected. 

 

Fig. 6. Adjacency list using linked list. 

Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html 

In the context of this paper, given the sparse nature of of the 
global flight network, the adjacency list is the most appropriate 
and efficient representation. 

B. A* Search 

A* (pronounced "A-star") is an informed search algorithm, 
with the core idea of avoiding expanding paths that are already 
expensive based on actual costs and selected heuristics. It finds 
the least-cost path from a start node to a goal node by 
maintaining a priority queue of paths to explore. The priority of 
each path is determined by the evaluation function [3]: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1) 

http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
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Where: 

• 𝑛 is the last node on the path. 

• 𝑔(𝑛) is the actual cost of the path from the start node to 
node n. 

• ℎ(𝑛) is the heuristic, an estimated cost of the cheapest 
path from n to the goal node. This heuristic guides A* 
to prioritize paths that appear to be leading closer to the 
goal node. 

For A* to guarantee an optimal solution, its heuristic ℎ(𝑛) 
must be admissible, meaning it never overestimates the actual 
cost to reach the goal. In terms of complexity, A* has both time 
and space complexity of O(bm). 

A* search can be performed from both start and goal node 
simultaneously. This type of search is called bidirectional 
search. It consists of two searches: 

• Forward search: Starts from the start node towards the 
goal node. This is identical to unidirectional A* search. 

• Backward search: Starts from the goal node towards the 
start node. 

The backward search requires a reversed graph, where edge 
A → B is turned into B → A. Its cost function 𝑔𝑏𝑤𝑑(𝑛) calculates 
the cost from the goal node, and its heuristic ℎ𝑏𝑤𝑑(𝑛) estimates 
the cost from node n to the start node. 

The termination condition occurs when one search finds a 
node that has already been fully processed by the other, and the 
best path found through this intersection point is proven to be 
better than any other potential path in either priority queue. This 
strategy has the potential to drastically reduce the number of 
nodes explored, leading to significant performance gains. 

C. Haversine Formula 

When calculating the straight-line distance between two 
geographical points, one cannot use simple Euclidean distance 
due to the Earth's curvature. Haversine formula is a 
mathematical equation used in navigation to calculate the great-
circle distance between two points on a sphere from their 
latitudes and longitudes. 

Given the latitude (𝜑), longitude (𝜆), and the Earth's mean 
radius (𝑟, approximated as 6,371 km), the Haversine formula 
calculates the distance d between point 1 (𝜑1, λ1) and point 2 
(𝜑2, λ2) as follows [4]: 

hav θ = hav(Δ𝜑) + 𝑐𝑜𝑠 𝜑1 𝑐𝑜𝑠 𝜑2 hav(Δλ) (2) 

𝑑 = 𝑟 archav(hav θ) = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛 √hav θ (3) 

Where: 

• hav θ = 𝑠𝑖𝑛2 (
θ

2
) 

• Δ𝜑 = 𝜑2 − 𝜑1 

• Δλ = λ2 − λ1 

• All angular values in radian. 

III. IMPLEMENTATION 

The experiment uses Python as its language, chosen for its 
easy-to-use libraries. The dataset used is collected from 
https://www.flightsfrom.com, using scraper from 
https://github.com/Jonty/airline-route-data. Essential data for 
our use includes airports IATA code, its coordinates (latitude 
and longitude), and its routes that is directly connected to other 
airports. The data is saved into a JSON file. 

The data is imported and converted into graph in the form of 
adjacency list, building both forward and backward adjacency to 
prepare for bidirectional A* search. 

class AirportGraph:     

  def __init__(self, json_file_path: str): 

    # Store airport information 

    self.airports: Dict[str, Dict] = {} 

 

    # Adjacency list: {airport:  

    # [(destination, distance, time), ...]} 

    self.graph: Dict[str, List[Tuple[str, int, int]]]  

                = {} 

 

    # Reverse adjacency list for bidirectional search 

    self.reverse_graph: Dict[str, List[Tuple[str, int,  

                        int]]] = {} 

 

    self.__load_from_json(json_file_path) 

Fig. 7. AirportGraph class. 

The cost function 𝑔(𝑛) is defined as the accumulation of 
time taken from the start node to node n.  

The heuristic ℎ(𝑛) is defined as the approximate time it takes 
to travel from node n to the goal node using great-circle distance 
𝑑 and the average speed of an average aircraft as follows: 

ℎ(𝑛) =
𝑑

𝑣𝑎𝑣𝑔

(4) 

The 𝑣𝑎𝑣𝑔 used for this purpose is 885 km/h [5]. We take the 

lower bound to ensure the heuristic is admissible. Another factor 
contributing to ensuring admissibility is using great-circle 
distance, which is the shortest path between two points on Earth. 
This ensures the distance used in heuristic is shorter than the 
actual distance traveled because an actual aircraft travels at 
certain altitudes, not at the surface of the Earth. 

def haversine_distance(self, from_airport: str,  

                       to_airport: str) -> float: 

  from_info = self.get_airport_info(from_airport) 

  to_info = self.get_airport_info(to_airport) 

   

  if not from_info or not to_info: 

    return float('inf') 

   

  # Convert latitude and longitude from degrees to  

  # radians 

  lat1 = math.radians(float(from_info['latitude'])) 

  lon1 = math.radians(float(from_info['longitude'])) 

  lat2 = math.radians(float(to_info['latitude'])) 

  lon2 = math.radians(float(to_info['longitude'])) 

   

https://www.flightsfrom.com/
https://github.com/Jonty/airline-route-data
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  r = 6371 # Radius of earth in kilometers 

 

  # Haversine formula 

  dlat = lat2 - lat1 

  dlon = lon2 - lon1 

  hav_theta = math.sin(dlat/2)**2 + math.cos(lat1) *  

              math.cos(lat2) * math.sin(dlon/2)**2 

  d = 2 * r * math.asin(math.sqrt(hav_theta)) 

   

  return d 

Fig. 8. Haversine formula implementation. 

def a_star_search(self, start: str, goal: str, avg_speed: 

float = 885) -> Tuple[List[str], float, int]: 

  if start not in self.airports or goal not in  

    self.airports: 

    return [], float('inf'), 0 

 

  if start == goal: 

    return [start], 0, 1 

 

  # Priority queue:  

  # (f_score, g_score, current_airport, path) 

  open_set = [(0, 0, start, [start])] 

  closed_set = set() 

  g_scores = {start: 0} 

  nodes_visited = 0 

 

  while open_set: 

    current_f_score, current_g_score, current, path =  

      heapq.heappop(open_set) 

 

    if current in closed_set: 

      continue 

 

    closed_set.add(current) 

    nodes_visited += 1 

 

    if current == goal: 

      return path, current_g_score, nodes_visited 

 

    # Explore neighbors 

    for neighbor, distance, time in  

      self.get_connections(current): 

      if neighbor in closed_set: 

        continue 

 

      # Calculate actual cost (g_score) using time 

      tentative_g_score = current_g_score + time 

 

      if neighbor not in g_scores or tentative_g_score <  

         g_scores[neighbor]: 

        g_scores[neighbor] = tentative_g_score 

 

        # Calculate heuristic cost (h_score) using  

        # haversine distance / avg_speed 

        h_distance = self.haversine_distance(neighbor,  

                                             goal) 

        h_score = (h_distance / avg_speed) * 60 

         

        # Calculate total estimated cost  

        # (f_score = g_score + h_score) 

        f_score = tentative_g_score + h_score 

        new_path = path + [neighbor] 

        heapq.heappush(open_set, (f_score,  

                  tentative_g_score, neighbor, new_path)) 

 

  return [], float('inf'), nodes_visited  # No path found 

Fig. 9. Unidirectional A* search implementation. 

def bidirectional_a_star_search(self, start: str, goal: 

str, avg_speed: float = 885) -> Tuple[List[str], float, 

int]: 

  if start not in self.airports or goal not in  

    self.airports: 

    return [], float('inf'), 0 

 

  if start == goal: 

    return [start], 0, 1 

 

  # Forward search data structures 

  forward_open = [(0, 0, start, [start])] 

  forward_closed = set() 

  forward_g_scores = {start: 0} 

  forward_parent = {start: None} 

 

  # Backward search data structures 

  backward_open = [(0, 0, goal, [goal])] 

  backward_closed = set() 

  backward_g_scores = {goal: 0} 

  backward_parent = {goal: None} 

 

  best_cost = float('inf') 

  meeting_node = None 

  nodes_visited = 0 

 

  while forward_open and backward_open: 

    # Forward search step 

    if forward_open: 

      current_f_score, current_g_score, current, path =  

        heapq.heappop(forward_open) 

 

      if current in forward_closed: 

        continue 

 

      forward_closed.add(current) 

      nodes_visited += 1 

 

      # Check if current node was reached by backward  

      # search 

      if current in backward_closed: 

        total_cost = current_g_score +  

          backward_g_scores.get(current, float('inf')) 

        if total_cost < best_cost: 

          best_cost = total_cost 

          meeting_node = current 

 

      # Explore forward neighbors 

      for neighbor, distance, time in  

        self.get_connections(current): 

        if neighbor in forward_closed: 
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          continue 

 

        tentative_g_score = current_g_score + time 

 

        if neighbor not in forward_g_scores or  

          tentative_g_score < forward_g_scores[neighbor]: 

          forward_g_scores[neighbor] = tentative_g_score 

          forward_parent[neighbor] = current 

 

          # Calculate heuristic cost (h_score):  

          # haversine distance to goal / avg_speed 

          h_distance = self.haversine_distance(neighbor,  

                                               goal) 

          h_score = (h_distance / avg_speed) * 60 

 

          # Calculate total estimated cost  

          # (f_score = g_score + h_score) 

          f_score = tentative_g_score + h_score 

          new_path = path + [neighbor] 

          heapq.heappush(forward_open, (f_score,  

            tentative_g_score, neighbor, new_path)) 

 

    # Backward search step 

    if backward_open: 

      current_f_score, current_g_score, current, path =  

        heapq.heappop(backward_open) 

 

      if current in backward_closed: 

        continue 

 

      backward_closed.add(current) 

      nodes_visited += 1 

 

      # Check if current node was reached by forward  

      # search 

      if current in forward_closed: 

        total_cost = forward_g_scores.get(current,  

          float('inf')) + current_g_score 

        if total_cost < best_cost: 

          best_cost = total_cost 

          meeting_node = current 

 

      # Explore backward neighbors (using reverse graph) 

      for neighbor, distance, time in  

        self.get_reverse_connections(current): 

        if neighbor in backward_closed: 

          continue 

 

        tentative_g_score = current_g_score + time 

 

        if neighbor not in backward_g_scores or  

           tentative_g_score <  

           backward_g_scores[neighbor]: 

          backward_g_scores[neighbor] = tentative_g_score 

          backward_parent[neighbor] = current 

 

          # Calculate heuristic cost (h_score): haversine 

distance from start / avg_speed 

          h_distance = self.haversine_distance(start,  

                       neighbor) 

          h_score = (h_distance / avg_speed) * 60 

 

          f_score = tentative_g_score + h_score 

          new_path = path + [neighbor] 

          heapq.heappush(backward_open, (f_score,  

            tentative_g_score, neighbor, new_path)) 

 

    # Early termination if we found a meeting point 

    if meeting_node is not None: 

      break 

 

  # Reconstruct path if meeting point found 

  if meeting_node is not None: 

    # Build forward path from start to meeting node 

    forward_path = [] 

    current = meeting_node 

    while current is not None: 

      forward_path.append(current) 

      current = forward_parent.get(current) 

    forward_path.reverse() 

 

    # Build backward path from meeting node to goal 

    backward_path = [] 

    current = backward_parent.get(meeting_node) 

    while current is not None: 

      backward_path.append(current) 

      current = backward_parent.get(current) 

 

    # Combine paths 

    final_path = forward_path + backward_path 

    return final_path, best_cost, nodes_visited 

 

  return [], float('inf'), nodes_visited 

Fig. 10. Bidirectional A* search implementation. 

IV. RESULTS AND ANALYSIS 

To analyze the results, a test suite is created. The test suite 
generates test routes between different airport categories based 
on expected path length. List of airports are sorted based on their 
connectivity (i.e. how much airport they connect). The 
categories are divided into: 

• Hub-to-Hub (Short) 

• Hub-to-Large (Medium-Short) 

• Large-to-Medium (Medium) 

• Medium-to-Small (Medium-Long) 

• Small-to-Small (Long) 

• Cross-Continental (Very Long) 

Then 5 pairs of airports from each category are selected 
randomly. The selected routes are subjected to both 
unidirectional and bidirectional A* search. Table I. and Fig. 11 
shows the result of the test suite. 
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TABLE I.  PER-CATEGORY RESULTS 

 

 

OVERALL PERFORMANCE ANALYSIS: 

---------------------------------------- 

Success Rate: 60/60 (100.0%) 

 

- Performance Improvements: 

   Average Speedup: 1.75x 

   Average Node Reduction: 55.3% 

 

- Bidirectional Efficiency: 

   Faster execution: 48/60 (80.0%) 

   Fewer nodes visited: 53/60 (88.3%) 

 

DETAILED ALGORITHM COMPARISON: 

--------------------------------------------- 

- Optimal Path Quality: 36/60 (60.0%) found same  

      optimal cost 

 

- Performance by Path Length: 

   Short (≤2 hops)  : 10 tests, 0.87x speedup,  

                         -17.0% fewer nodes 

   Medium (3-4 hops): 22 tests, 1.65x speedup,  

                         68.2% fewer nodes 

   Long (≥5 hops)   : 28 tests, 2.14x speedup,  

                         71.0% fewer nodes 

Fig. 11. Excerpt of test suite result. 

The data shows a clear correlation between path length and 
the effectiveness of bidirectional search. 

• Short Paths (≤ 2 hops): For short routes, such as the 
"Hub-to-Hub" category, bidirectional search performs 
worse than unidirectional search. It resulted in a 0.79x-
0.87x speedup (i.e., it was 13-21% slower) and increased 
the number of nodes visited by 3-17%. This is due to the 
inherent overhead of managing two separate search 
frontiers (two open/closed lists), which outweighs the 
benefits when the goal is already close. 

• Medium Paths (3-4 hops): This is where the benefits of 
bidirectional search become apparent. For routes like 
"Hub-to-Large" and "Large-to-Medium," it achieved an 
average speedup of 1.65x and a massive 68.2% reduction 
in nodes visited. The "Large-to-Medium" category saw 

the most dramatic node reduction in the entire test set 
(82.9%), leading to a 2.27x speedup. This indicates that 
as search complexity grows, the "meet-in-the-middle" 
strategy becomes highly effective. 

• Long Paths (≥ 5 hops): The performance advantage is 
most noticeable for long and complex routes. Across 
these tests, bidirectional search achieved an average 
speedup of 2.14x while visiting 71.0% fewer nodes. The 
"Small-to-Small" category, with an average path length 
of 6.5 hops, registered the highest speedup of 2.57x. This 
confirms that the bidirectional algorithm scales 
exceptionally well for deep searches in a large graph. 

While a correctly implemented bidirectional A* search 
should always find the optimal path, the results show that only 
36 out of 60 tests (60.0%) found the same optimal cost path as 
the unidirectional search. 

This suggests a potential flaw in the bidirectional algorithm's 
implementation, likely in its termination condition. A 
bidirectional search can find a path when its two frontiers first 
meet, but this initial path is not guaranteed to be the shortest. The 
algorithm must continue searching until the sum of the costs 
from the start and to the end for the meeting point is less than or 
equal to the length of the best path found so far. This presents a 
critical trade-off, that is, the current implementation often 
sacrifices path quality for execution speed. 

V. CONCLUSION 

The experiment in this paper was conducted to validate the 
hypothesis that a Bidirectional A* search offers a substantial 
performance improvement over a standard Unidirectional A* 
search by reducing the total nodes explored in a real-world 
global flight network. The results of the experiment largely 
confirm this hypothesis, but with critical caveats regarding path 
length and solution optimality. 

While Bidirectional A* is a powerful optimization that can 
drastically accelerate pathfinding in large graphs, its practical 
application requires a robust implementation that correctly 
handles the termination condition. The experiment highlights 
that without this, significant gains in execution speed may come 
at the unacceptable cost of sacrificing path optimality. 

APPENDIX 

Source code:  
https://github.com/buege-putra/AStarComparison  
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