
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A Comparative Performance Analysis of

Unidirectional and Bidirectional A* Search for

Global Flight Pathfinding

Buege Mahara Putra - 13523037

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: buege.putra@gmail.com , 13523037@std.stei.itb.ac.id

Abstract— The A* search algorithm is effective for finding

optimal paths but can face performance issues in large-scale

graphs. This paper investigates the performance of Bidirectional

A* search as an optimization over the standard Unidirectional A*.

Both algorithms were implemented and tested on a real-world

flight dataset, with the objective of finding the path with the

minimum total travel time. The heuristic function was calculated

using the Haversine great-circle distance to estimate remaining

travel time. The results show that bidirectional search offers a

significant average speedup of 1.75x and reduces the number of

nodes explored by 55.3%, with its advantage growing substantially

on medium and long-haul routes. However, this speed increase

came at a considerable cost. The bidirectional implementation

only found the same optimal-cost path as the unidirectional search

in 60% of cases, pointing to a common implementation flaw in its

termination condition. The study concludes that while

bidirectional A* is a powerful optimization for large-scale

pathfinding, its practical application demands a correct

implementation to ensure that gains in execution speed do not

compromise path optimality.

Keywords— A* search; bidirectional search; pathfinding; flight

network; graph theory; heuristic; Haversine formula.

I. INTRODUCTION

The appearance of complex, interconnected networks has
been a defining feature of the 21st century, from social media
graphs to global supply chains. Among the most tangible of
these is the global air transportation network, a vast web
connecting thousands of airports with millions of routes. For
passengers, airlines, and logistics companies, navigating this
network efficiently is a problem with practical and economic
significance. The challenge does not only lie in finding a path
between two cities, but in discovering the optimal path
according to a specific metric, such as cost, distance, or, as is the
focus of this paper, total travel time.

Pathfinding algorithms provide the computational
framework for solving such problems. While foundational
algorithms can guarantee a path, more advanced techniques are
required for achieving optimality in a timely manner, especially
as the scale of the network grows. The A* search algorithm
stands out as a highly effective method for finding the lowest-

cost path by intelligently using a heuristic to guide its search,
significantly outperforming "blind" searches in complex graphs.

However, even A* can suffer from performance degradation
in large state spaces. Application of bidirectional search can
offer promising optimization, where two simultaneous searches,
one forward from the start and one backward from the goal, are
conducted with the aim of meeting in the middle. This paper
hypothesizes that a Bidirectional A* search will offer a
substantial performance improvement over the standard
Unidirectional A* by reducing the total number of nodes that
must be explored.

To validate this hypothesis, this study implements and
compares both Unidirectional and Bidirectional A* algorithms.
These algorithms are applied to a real-world global flight
network dataset, where the objective is to find the path with the
minimum total flight time. Performance will be quantitatively
measured by analyzing the number of expanded nodes and the
total execution time required to find the optimal path. This paper
aims to provide an empirical basis for evaluating the practical
benefits of bidirectional search in the context of large-scale, real-
world pathfinding problems.

II. THEORETICAL BASIS

A. Graph

A graph is a data structure that represents connections
between objects. It consists of a set of nodes (or vertices) and a
set of edges that connect pairs of nodes [1]. For example, a graph
can be used to represent system of bridges and land separated by
rivers, with nodes representing lands and edges representing
bridges, shown in Fig. 1.

Fig. 1. Representation of Königsberg bridge problem in graph. Source: [1]

mailto:buege.putra@gmail.com
mailto:13523037@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A fundamental property of a graph is its directionality. In an
undirected graph, the edges are bidirectional, where a
connection between node A and node B implies that one can
travel from A to B and also from B to A along the same edge. In
contrast, a directed graph (or digraph) uses edges that have a
specific orientation. An edge from node A to node B does not
imply the existence of a corresponding edge from B to A [1].

Fig. 2. A directed graph. Source: [1]

The global flight network is inherently a directed graph. For
example, the existence of a scheduled flight from Jakarta (CGK)
to Tokyo (NRT) is a distinct entity from a flight operating from
Tokyo (NRT) to Jakarta (CGK). They are separate routes with
different flight numbers, departure times, and potentially even
different flight durations due to external factors such as jet
streams.

A graph becomes a weighted graph when a numerical value,
or weight, is associated with each edge. This weight quantifies a
specific attribute of the connection, such as its cost, distance,
capacity, or travel time. The choice of weight is critical as it
defines the criteria for an "optimal" path. A path that is optimal
for one weight (e.g., shortest distance) may be suboptimal for
another (e.g., lowest price).

Fig. 3. Weighted vs. unweighted graph. Source: [1]

In the context of this paper, each directed edge (flight route)
is assigned two weights:

• Time: The duration of the flight in minutes. This value
serves as the cost to be minimized by the pathfinding
algorithm. The optimal path will be the one with the
lowest cumulative flight time.

• Distance: The physical distance of the flight route in
kilometers. This value is not used as a direct cost but is
used to calculate the heuristic for the A* search
algorithm, providing an estimate of the remaining travel
time.

A graph can be represented in various ways in computer
memory. The choice of representation method has significant
implications for memory usage and the performance of
pathfinding operations. Some of the most common
representation methods are [2]:

• Adjacency matrix: Each pair of node in the graph is
represented as a matrix, with the value as the weight of
the edges connecting the nodes in the case of weighted
graph, or simply boolean 1/0 in the case of unweighted
graph.

Fig. 4. Adjacency matrix.

Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html

• Incidency matrix: Nodes are represented in the rows,
and edges are represented in the columns of the matrix.
For a directed graph, the (weighted) value is positive if
the direction of the edge is “out” from the node, and
negative if the direction goes “in” to the node.

Fig. 5. Incidency matrix.
Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html

• Adjacency list: The graph is represented using linked
list, with each node having elements containing pointer
to nodes connected.

Fig. 6. Adjacency list using linked list.

Source: http://www.btechsmartclass.com/data_structures/graph-

representations.html

In the context of this paper, given the sparse nature of of the
global flight network, the adjacency list is the most appropriate
and efficient representation.

B. A* Search

A* (pronounced "A-star") is an informed search algorithm,
with the core idea of avoiding expanding paths that are already
expensive based on actual costs and selected heuristics. It finds
the least-cost path from a start node to a goal node by
maintaining a priority queue of paths to explore. The priority of
each path is determined by the evaluation function [3]:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html
http://www.btechsmartclass.com/data_structures/graph-representations.html

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Where:

• 𝑛 is the last node on the path.

• 𝑔(𝑛) is the actual cost of the path from the start node to
node n.

• ℎ(𝑛) is the heuristic, an estimated cost of the cheapest
path from n to the goal node. This heuristic guides A*
to prioritize paths that appear to be leading closer to the
goal node.

For A* to guarantee an optimal solution, its heuristic ℎ(𝑛)
must be admissible, meaning it never overestimates the actual
cost to reach the goal. In terms of complexity, A* has both time
and space complexity of O(bm).

A* search can be performed from both start and goal node
simultaneously. This type of search is called bidirectional
search. It consists of two searches:

• Forward search: Starts from the start node towards the
goal node. This is identical to unidirectional A* search.

• Backward search: Starts from the goal node towards the
start node.

The backward search requires a reversed graph, where edge
A → B is turned into B → A. Its cost function 𝑔𝑏𝑤𝑑(𝑛) calculates
the cost from the goal node, and its heuristic ℎ𝑏𝑤𝑑(𝑛) estimates
the cost from node n to the start node.

The termination condition occurs when one search finds a
node that has already been fully processed by the other, and the
best path found through this intersection point is proven to be
better than any other potential path in either priority queue. This
strategy has the potential to drastically reduce the number of
nodes explored, leading to significant performance gains.

C. Haversine Formula

When calculating the straight-line distance between two
geographical points, one cannot use simple Euclidean distance
due to the Earth's curvature. Haversine formula is a
mathematical equation used in navigation to calculate the great-
circle distance between two points on a sphere from their
latitudes and longitudes.

Given the latitude (𝜑), longitude (𝜆), and the Earth's mean
radius (𝑟, approximated as 6,371 km), the Haversine formula
calculates the distance d between point 1 (𝜑1, λ1) and point 2
(𝜑2, λ2) as follows [4]:

hav θ = hav(Δ𝜑) + 𝑐𝑜𝑠 𝜑1 𝑐𝑜𝑠 𝜑2 hav(Δλ) (2)

𝑑 = 𝑟 archav(hav θ) = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛 √hav θ (3)

Where:

• hav θ = 𝑠𝑖𝑛2 (
θ

2
)

• Δ𝜑 = 𝜑2 − 𝜑1

• Δλ = λ2 − λ1

• All angular values in radian.

III. IMPLEMENTATION

The experiment uses Python as its language, chosen for its
easy-to-use libraries. The dataset used is collected from
https://www.flightsfrom.com, using scraper from
https://github.com/Jonty/airline-route-data. Essential data for
our use includes airports IATA code, its coordinates (latitude
and longitude), and its routes that is directly connected to other
airports. The data is saved into a JSON file.

The data is imported and converted into graph in the form of
adjacency list, building both forward and backward adjacency to
prepare for bidirectional A* search.

class AirportGraph:

 def __init__(self, json_file_path: str):

 # Store airport information

 self.airports: Dict[str, Dict] = {}

 # Adjacency list: {airport:

 # [(destination, distance, time), ...]}

 self.graph: Dict[str, List[Tuple[str, int, int]]]

 = {}

 # Reverse adjacency list for bidirectional search

 self.reverse_graph: Dict[str, List[Tuple[str, int,

 int]]] = {}

 self.__load_from_json(json_file_path)

Fig. 7. AirportGraph class.

The cost function 𝑔(𝑛) is defined as the accumulation of
time taken from the start node to node n.

The heuristic ℎ(𝑛) is defined as the approximate time it takes
to travel from node n to the goal node using great-circle distance
𝑑 and the average speed of an average aircraft as follows:

ℎ(𝑛) =
𝑑

𝑣𝑎𝑣𝑔

(4)

The 𝑣𝑎𝑣𝑔 used for this purpose is 885 km/h [5]. We take the

lower bound to ensure the heuristic is admissible. Another factor
contributing to ensuring admissibility is using great-circle
distance, which is the shortest path between two points on Earth.
This ensures the distance used in heuristic is shorter than the
actual distance traveled because an actual aircraft travels at
certain altitudes, not at the surface of the Earth.

def haversine_distance(self, from_airport: str,

 to_airport: str) -> float:

 from_info = self.get_airport_info(from_airport)

 to_info = self.get_airport_info(to_airport)

 if not from_info or not to_info:

 return float('inf')

 # Convert latitude and longitude from degrees to

 # radians

 lat1 = math.radians(float(from_info['latitude']))

 lon1 = math.radians(float(from_info['longitude']))

 lat2 = math.radians(float(to_info['latitude']))

 lon2 = math.radians(float(to_info['longitude']))

https://www.flightsfrom.com/
https://github.com/Jonty/airline-route-data

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 r = 6371 # Radius of earth in kilometers

 # Haversine formula

 dlat = lat2 - lat1

 dlon = lon2 - lon1

 hav_theta = math.sin(dlat/2)**2 + math.cos(lat1) *

 math.cos(lat2) * math.sin(dlon/2)**2

 d = 2 * r * math.asin(math.sqrt(hav_theta))

 return d

Fig. 8. Haversine formula implementation.

def a_star_search(self, start: str, goal: str, avg_speed:

float = 885) -> Tuple[List[str], float, int]:

 if start not in self.airports or goal not in

 self.airports:

 return [], float('inf'), 0

 if start == goal:

 return [start], 0, 1

 # Priority queue:

 # (f_score, g_score, current_airport, path)

 open_set = [(0, 0, start, [start])]

 closed_set = set()

 g_scores = {start: 0}

 nodes_visited = 0

 while open_set:

 current_f_score, current_g_score, current, path =

 heapq.heappop(open_set)

 if current in closed_set:

 continue

 closed_set.add(current)

 nodes_visited += 1

 if current == goal:

 return path, current_g_score, nodes_visited

 # Explore neighbors

 for neighbor, distance, time in

 self.get_connections(current):

 if neighbor in closed_set:

 continue

 # Calculate actual cost (g_score) using time

 tentative_g_score = current_g_score + time

 if neighbor not in g_scores or tentative_g_score <

 g_scores[neighbor]:

 g_scores[neighbor] = tentative_g_score

 # Calculate heuristic cost (h_score) using

 # haversine distance / avg_speed

 h_distance = self.haversine_distance(neighbor,

 goal)

 h_score = (h_distance / avg_speed) * 60

 # Calculate total estimated cost

 # (f_score = g_score + h_score)

 f_score = tentative_g_score + h_score

 new_path = path + [neighbor]

 heapq.heappush(open_set, (f_score,

 tentative_g_score, neighbor, new_path))

 return [], float('inf'), nodes_visited # No path found

Fig. 9. Unidirectional A* search implementation.

def bidirectional_a_star_search(self, start: str, goal:

str, avg_speed: float = 885) -> Tuple[List[str], float,

int]:

 if start not in self.airports or goal not in

 self.airports:

 return [], float('inf'), 0

 if start == goal:

 return [start], 0, 1

 # Forward search data structures

 forward_open = [(0, 0, start, [start])]

 forward_closed = set()

 forward_g_scores = {start: 0}

 forward_parent = {start: None}

 # Backward search data structures

 backward_open = [(0, 0, goal, [goal])]

 backward_closed = set()

 backward_g_scores = {goal: 0}

 backward_parent = {goal: None}

 best_cost = float('inf')

 meeting_node = None

 nodes_visited = 0

 while forward_open and backward_open:

 # Forward search step

 if forward_open:

 current_f_score, current_g_score, current, path =

 heapq.heappop(forward_open)

 if current in forward_closed:

 continue

 forward_closed.add(current)

 nodes_visited += 1

 # Check if current node was reached by backward

 # search

 if current in backward_closed:

 total_cost = current_g_score +

 backward_g_scores.get(current, float('inf'))

 if total_cost < best_cost:

 best_cost = total_cost

 meeting_node = current

 # Explore forward neighbors

 for neighbor, distance, time in

 self.get_connections(current):

 if neighbor in forward_closed:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 continue

 tentative_g_score = current_g_score + time

 if neighbor not in forward_g_scores or

 tentative_g_score < forward_g_scores[neighbor]:

 forward_g_scores[neighbor] = tentative_g_score

 forward_parent[neighbor] = current

 # Calculate heuristic cost (h_score):

 # haversine distance to goal / avg_speed

 h_distance = self.haversine_distance(neighbor,

 goal)

 h_score = (h_distance / avg_speed) * 60

 # Calculate total estimated cost

 # (f_score = g_score + h_score)

 f_score = tentative_g_score + h_score

 new_path = path + [neighbor]

 heapq.heappush(forward_open, (f_score,

 tentative_g_score, neighbor, new_path))

 # Backward search step

 if backward_open:

 current_f_score, current_g_score, current, path =

 heapq.heappop(backward_open)

 if current in backward_closed:

 continue

 backward_closed.add(current)

 nodes_visited += 1

 # Check if current node was reached by forward

 # search

 if current in forward_closed:

 total_cost = forward_g_scores.get(current,

 float('inf')) + current_g_score

 if total_cost < best_cost:

 best_cost = total_cost

 meeting_node = current

 # Explore backward neighbors (using reverse graph)

 for neighbor, distance, time in

 self.get_reverse_connections(current):

 if neighbor in backward_closed:

 continue

 tentative_g_score = current_g_score + time

 if neighbor not in backward_g_scores or

 tentative_g_score <

 backward_g_scores[neighbor]:

 backward_g_scores[neighbor] = tentative_g_score

 backward_parent[neighbor] = current

 # Calculate heuristic cost (h_score): haversine

distance from start / avg_speed

 h_distance = self.haversine_distance(start,

 neighbor)

 h_score = (h_distance / avg_speed) * 60

 f_score = tentative_g_score + h_score

 new_path = path + [neighbor]

 heapq.heappush(backward_open, (f_score,

 tentative_g_score, neighbor, new_path))

 # Early termination if we found a meeting point

 if meeting_node is not None:

 break

 # Reconstruct path if meeting point found

 if meeting_node is not None:

 # Build forward path from start to meeting node

 forward_path = []

 current = meeting_node

 while current is not None:

 forward_path.append(current)

 current = forward_parent.get(current)

 forward_path.reverse()

 # Build backward path from meeting node to goal

 backward_path = []

 current = backward_parent.get(meeting_node)

 while current is not None:

 backward_path.append(current)

 current = backward_parent.get(current)

 # Combine paths

 final_path = forward_path + backward_path

 return final_path, best_cost, nodes_visited

 return [], float('inf'), nodes_visited

Fig. 10. Bidirectional A* search implementation.

IV. RESULTS AND ANALYSIS

To analyze the results, a test suite is created. The test suite
generates test routes between different airport categories based
on expected path length. List of airports are sorted based on their
connectivity (i.e. how much airport they connect). The
categories are divided into:

• Hub-to-Hub (Short)

• Hub-to-Large (Medium-Short)

• Large-to-Medium (Medium)

• Medium-to-Small (Medium-Long)

• Small-to-Small (Long)

• Cross-Continental (Very Long)

Then 5 pairs of airports from each category are selected
randomly. The selected routes are subjected to both
unidirectional and bidirectional A* search. Table I. and Fig. 11
shows the result of the test suite.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

TABLE I. PER-CATEGORY RESULTS

OVERALL PERFORMANCE ANALYSIS:

--

Success Rate: 60/60 (100.0%)

- Performance Improvements:

 Average Speedup: 1.75x

 Average Node Reduction: 55.3%

- Bidirectional Efficiency:

 Faster execution: 48/60 (80.0%)

 Fewer nodes visited: 53/60 (88.3%)

DETAILED ALGORITHM COMPARISON:

- Optimal Path Quality: 36/60 (60.0%) found same

 optimal cost

- Performance by Path Length:

 Short (≤2 hops) : 10 tests, 0.87x speedup,

 -17.0% fewer nodes

 Medium (3-4 hops): 22 tests, 1.65x speedup,

 68.2% fewer nodes

 Long (≥5 hops) : 28 tests, 2.14x speedup,

 71.0% fewer nodes

Fig. 11. Excerpt of test suite result.

The data shows a clear correlation between path length and
the effectiveness of bidirectional search.

• Short Paths (≤ 2 hops): For short routes, such as the
"Hub-to-Hub" category, bidirectional search performs
worse than unidirectional search. It resulted in a 0.79x-
0.87x speedup (i.e., it was 13-21% slower) and increased
the number of nodes visited by 3-17%. This is due to the
inherent overhead of managing two separate search
frontiers (two open/closed lists), which outweighs the
benefits when the goal is already close.

• Medium Paths (3-4 hops): This is where the benefits of
bidirectional search become apparent. For routes like
"Hub-to-Large" and "Large-to-Medium," it achieved an
average speedup of 1.65x and a massive 68.2% reduction
in nodes visited. The "Large-to-Medium" category saw

the most dramatic node reduction in the entire test set
(82.9%), leading to a 2.27x speedup. This indicates that
as search complexity grows, the "meet-in-the-middle"
strategy becomes highly effective.

• Long Paths (≥ 5 hops): The performance advantage is
most noticeable for long and complex routes. Across
these tests, bidirectional search achieved an average
speedup of 2.14x while visiting 71.0% fewer nodes. The
"Small-to-Small" category, with an average path length
of 6.5 hops, registered the highest speedup of 2.57x. This
confirms that the bidirectional algorithm scales
exceptionally well for deep searches in a large graph.

While a correctly implemented bidirectional A* search
should always find the optimal path, the results show that only
36 out of 60 tests (60.0%) found the same optimal cost path as
the unidirectional search.

This suggests a potential flaw in the bidirectional algorithm's
implementation, likely in its termination condition. A
bidirectional search can find a path when its two frontiers first
meet, but this initial path is not guaranteed to be the shortest. The
algorithm must continue searching until the sum of the costs
from the start and to the end for the meeting point is less than or
equal to the length of the best path found so far. This presents a
critical trade-off, that is, the current implementation often
sacrifices path quality for execution speed.

V. CONCLUSION

The experiment in this paper was conducted to validate the
hypothesis that a Bidirectional A* search offers a substantial
performance improvement over a standard Unidirectional A*
search by reducing the total nodes explored in a real-world
global flight network. The results of the experiment largely
confirm this hypothesis, but with critical caveats regarding path
length and solution optimality.

While Bidirectional A* is a powerful optimization that can
drastically accelerate pathfinding in large graphs, its practical
application requires a robust implementation that correctly
handles the termination condition. The experiment highlights
that without this, significant gains in execution speed may come
at the unacceptable cost of sacrificing path optimality.

APPENDIX

Source code:
https://github.com/buege-putra/AStarComparison

ACKNOWLEDGEMENT

The author of this paper would like to thank the lecturer of
this course, Dr. Nur Ulfa Maulidevi for her guidance throughout
the course, and to thank the author’s family and friends for their
support throughout the period of writing this paper.

https://github.com/buege-putra/AStarComparison

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

REFERENCES

[1] R. Munir, “Graf (Bag. 1),” 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf

[2] R. Munir, “Graf (Bag. 2),” 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-
Graf-Bagian2-2024.pdf

[3] N. Ulfa Maulidevi and R. Munir, “Penentuan Rute (Route/Path Planning)
Bagian 2: Algoritma A*,” 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-
Route-Planning-(2025)-Bagian2.pdf

[4] G. Van Brummelen, Heavenly Mathematics: The Forgotten Art of
Spherical Trigonometry. Princeton University Press, 2013.

[5] World Aviation, “What’s the speed of an airplane? - World Aviation
ATO,” World Aviation | Escuela de Pilotos de Referencia, Sep. 13, 2024.
https://worldaviationato.com/en/airplane-speed/

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Buege Mahara Putra

13523037

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://worldaviationato.com/en/airplane-speed/

